) k2 (1 ,
o R pasi bk E-'” (f

Liberating Code with ‘ ©EL S i Ot [

\_‘_;_ =

{f

Dev Talks




Muh Isfhani Ghiath -

Senior Software Engineer Android @ Tokopedia
Co-Organizer @ GDG Jakarta
Former Lead @ Google DSC

@isfaaghyth

Opinions expressed here are my own



Liberating-Codewith |

How kotlin makes life easier



Part 1




Tips in general



Kotlin delegation ®

Delegation is one of design pattern in which an object
handles a request by delegating to a helper object,

called the delegate.

var inverted by uniqueObservable(false) { refreshDrawableState() }




Kotlin delegation ®

Main point is to reduce boilerplate of code,
with following a rule based.

// This automatically creates and clears the binding in a lifecycle-aware way.

private val binding: WifiNetworksFragmentBinding by viewBinding()

// This does the inflate too.
private val binding: WifiNetworkViewBinding by viewBinding()



Extension! ¥

Kotlin provides an ability to extend a class with
new functionality without having to inherit from
the class or use design patterns such as Decorator.

One of example, converting dp to px.

val Number.dp get() = toFloat() = (Resources.getSystem().displayMetrics
.densityDpi.toFloat() / DisplayMetrics.DENSITY_DEFAULT)

recyclerView.updatePadding(top = 14.dp.toInt())



Structured Concurrency!

Kotlin Coroutines make asynchronous code as easy to work
with as blocking code. Coroutines dramatically simplify
background task management for everything from

network calls to accessing local data.



Structured Concurrency! +

private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
protected Long doInBackground(URL... urls) {
int count = urls.length;
long totalSize = 9;
// TODO
return totalSize;

protected void onProgressUpdate(Integer... progress) {}

protected void onPostExecute(Long result) {}



Structured Concurrency! +

fun makeLoginRequest(username: String, token: String) {
viewModelScope.launch {
when (result) {
is Result.Success<LoginResponse> -> // Happy path
else -> // Show error in UI



Testing! (1229

val car = mockk<Car>()

every { car.drive(Direction.NORTH) } returns Outcome.OK
car.drive(Direction.NORTH) // returns 0K

verify { car.drive(Direction.NORTH) }

confirmVerified(car)



Testing! (1229

Final by default

In contrast to Java, Kotlin classes (and functions) are final by default. This
means Mockito requires extra configuration to enable it to work (and only
in some cases). Whereas, Mockk can work around this using inline class
transformation.



Testing! (1229

Chained mocking

With Mockk you can chain your mocking, meaning you can provide
concise and clear tests.

val mockedClass = mockk<MyClass>()

every { mockedClass.someMethod().someOtherMethod() } returns
"Something"



Testing! (1229

Object mocking

Kotlin objects map to Java statics. Mockito alone doesn’t support
mocking of statics. There are other frameworks you can combine with
Mockito, but Mockk provides this out of the box.

mockObject(MyObject)
every { MyObject.someMethod() } returns "Something"



7 Live Templates

makes it easier for you to write
the same code over and over.




Green Gutter Culture

Implement a culture based on
Android Studio's built-in inspections.




Treat all Kotlin warnings as errors &

Treat all of the warnings as error so we can fix it
and explicit suppressed.

allprojects {
gradle.projectsEvaluated {
tasks.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompile).configureEach {
kotlinOptions {
allwWwarningsAsErrors = true

by



Part 2




Study Case



12:30 v4l

¢ Q i
S D Alto’s Odyssey
& Noodlecake Studios Inc

46% 5M+ €

About this game >

Discover the endless desert

Action Editors’ choice

Ratings & reviews © .4

4.6 :=




A few solution:

- Using RecyclerView with Multiple View Type
- With Visitable (Visitor Pattern)
- With Adapter Delegate

éé ”

- <include layout="...">

Is it better?

No, of course not. you have to define
a ton of code in one place (unmaintainable)



7

A

@

Alto’s Odyssey

ApplicationinfoUlView
UlComponent_1

I—— ————————
Screen
DownloadUIView State
UlComponent_3 Event

AppSnapshotUIView P
UlComponent_4

v4an

jo




How it works?

Let’s take a look in here:
https://github.com/isfaaghyth/floppy




Kotlin based?



Jetpack Compose! @

Jetpack Compose is Android’s modern toolkit

for building native Ul. It simplifies and accelerates Ul
development on Android. Quickly bring your app to life
with less code, powerful tools, and intuitive Kotlin APIs.



Jetpack Compose! @

Less code Intuitive Accelerate Development Powerful

Do more with less code and avoid Just describe your Ul, and Compose Compatible with all your existing code Create beautiful apps with direct

entire classes of bugs, so code is takes care of the rest. As app state so you can adopt when and where you access to the Android platform APIs

simple and easy to maintain. changes, your Ul automatically want. Iterate fast with live previews and built-in support for Material
updates. and full Android Studio support. Design, Dark theme, animations, and

more.



@Composable
fun JetpackCompose() {
Card {
rar expanded by remember { mutableStateOf(false) }
Column(Modifier.clickable { expanded = !expanded }) {
Image(painterResource(R.drawable. jetpack_compose))
AnimatedVisibility(expanded) {
Text(

MaterialTheme. graphy.h2,




Jetpack Compose! @

Sample Project with Modularization:

https://github.com/isfaaghyth/unofficial-pd




TL;DR




Before and After using Kotlin k=

Code &Bugfix [ Code & Bugfix [

Sleep Sleep



Thankyoul!



